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Abstract As the market of globally available online news is large and still
growing, there is a strong competition between online publishers in order to
reach the largest possible audience. Therefore an intelligent online publishing
strategy is of the highest importance to publishers. A prerequisite for being
able to optimize any online strategy, is to have trustworthy predictions of
how popular new online content may become. This paper presents a novel
methodology to model and predict the popularity of online news. We first
introduce a new strategy and mathematical model to capture view patterns of
online news. After a thorough analysis of such view patterns, we show that
well-chosen base functions lead to suitable models, and show how the influence
of day versus night on the total view patterns can be taken into account
to further increase the accuracy, without leading to more complex models.
Second, we turn to the prediction of future popularity, given recently published
content. By means of a new real-world dataset, we show that the combination
of features related to content, meta-data, and the temporal behavior leads
to significantly improved predictions, compared to existing approaches which
only consider features based on the historical popularity of the considered
articles. Whereas traditionally linear regression is used for the application
under study, we show that the more expressive gradient tree boosting method
proves beneficial for predicting news popularity.
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1 Introduction

The online consumption of news content, a large and still growing market
with respect to the traditional printed media, is undergoing major changes.
The original paradigm of users consuming content that was pre-selected by
news agents, shifts towards a setting where users themselves decide on which
content is relevant to them and their circles, and whom they share it with
over social media. As there is a strong competition between online publishers
in order to reach the highest possible audience, it is becoming very important
to decide which articles to promote on the front page of a news website, and
which articles to publish on different social media platforms such as Twitter
and Facebook. Therefore, in this paper, we propose a novel methodology to
model and predict the popularity of online news articles. These popularity
models and predictions can then be used by news agents to optimize their
online publishing strategy (which falls outside the scope of the current work).

We first conduct a thorough study to identify the distributions which un-
derlie the view patterns of articles, i.e. the number of visits articles receive over
time. This is important in order to understand how the popularity changes
over time. This study is performed on the articles published by the Belgian
Buzzfeed-like website newsmonkey1 between April and September 2015. We
observe that a view pattern in general consists of several components. The
contribution that we refer to as the direct views, becomes visible as soon as
the article is published on the news publisher’s website. However, when the
article is additionally published on social media channels, clear additional com-
ponents in the view patterns start to appear. In this paper, besides the direct
views, we will focus on the Facebook views and the Twitter views. We introduce
a model that closely fits these components and demonstrate that this model
performs better than baseline log-normal fits [10,19,18]. Additionally, we take
the influence of the diurnal cycle on the view patterns into account to further
increase the accuracy, without obtaining more complex models.

The proposed approach can be considered one example of a more general
idea for dealing with the heterogeneous character of item views. We show that
a flexible and complex model for the total number of views can be obtained
by separately modeling the most important components, for example those
originating from specific social media channels, especially as a response to
known events, such as pushing the item on those channels. Our experimental
results show that the same, very simple, elementary model can be used for
quite different contributions, in this case the direct views, Facebook views,
and Twitter views.

As a second contribution, we propose a novel methodology to predict the
final popularity of online news articles. As the total number of views consists
of easily identifiable components related to the origin of the views (i.e., di-
rect views, Facebook views, Twitter views), we train different regressors to
respectively predict the behavior for each of these components. Existing ap-

1 http://newsmonkey.be
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proaches train linear regressors using features based on historical popularity
values of the articles [17,15,5,9]. We investigate three ways to improve upon
these baseline methods: (a) We explicitly make use of our proposed temporal
model underlying the historical view pattern of the considered article, and use
its parameters as additional features for the regressors. (b) In addition to using
the historical popularity of the articles, we show that a variety of content-based
and meta-data related features (such as author, category, emotion...) signifi-
cantly contribute to improving the popularity predictions. (c) Finally, we show
that more complex regression algorithms, as compared to the standard linear
regression approach, can further improve the prediction effectiveness.

The remainder of this paper is structured as follows. We start with a re-
view of related work in Section 2. In Section 3 we describe the data acquisition
process. Subsequently, in Section 4, we investigate the dynamics of the views
received by articles, and propose a simple and effective model to model the
view patterns. This model is evaluated in Section 4.5. Our methodology to
better predict the final popularity of articles using novel features and ad-
vanced regression algorithms is described in Section 5. The experiments and
comparisons with existing approaches are described in Section 5.3. Finally, we
conclude our work in Section 6.

2 Related Work

The prediction of the popularity of online content has recently attracted a
considerable amount of research. Some authors tackled the problem of predict-
ing the popularity of an item before its publication [19,2,1]. Pre-publication
predictions are particularly useful for web content characterized by a short
lifespan such as online news articles. The researchers in [19,2,1] built classi-
fiers to classify news articles into different classes, such as ‘low popularity’,
‘medium popularity’, and ‘high popularity’. As quantitative indicators of pop-
ularity, they considered the number of comments on an article, the number of
associated tweets, and the number of views. However, the researchers in [19]
and [1] concluded that it is hard to accurately estimate an article’s popularity
without incorporating any early-stage popularity information. We did similar
pre-publication experiments on our dataset which led to the same conclusion.
Therefore, we will focus on post-publication predictions in this paper.

Post-publication prediction methods predict an item’s popularity based on
the users’ attention received early after publication. Kaltenbrunner et al. [10]
analyzed the popularity of news articles, and found that the long term tar-
get popularity of online content is strongly correlated with its early reference
popularity. Based on that observation, they proposed a linear popularity pre-
diction model with the early popularity and a constant multiplication factor
as input. The multiplication factor was set to the average growth in the train-
ing set. The authors of [17] improved that prediction model by optimizing the
multiplication factor specifically for the considered performance metric. Their
method showed good predictive performance on several data sets: votes on
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Digg stories [17], views of Youtube videos [17], views of blog posts [11], and
comments on articles published on a French [18] and Dutch news platform [20,
18].

While the model of Szabo and Huberman [17] seems reasonably accurate,
especially given its simplicity, it does have shortcomings. In particular, differ-
ent pieces of content may display a very similar popularity at an early stage,
yet exhibit a diverse popularity behavior afterwards. In other words, despite
the observations in [10], online content may experience very different popu-
larity evolution patterns [15,5]. Therefore, the authors of [15,12] investigated
whether the use of the historical popularity values of online content between
the publication time and an early reference time leads to more accurate pre-
dictions of the total popularity at a future target time. Pinto et al. [15] divided
the time between publication of the article and the reference time into different
intervals, and trained a linear regression model using the number of observed
views the articles received during each time interval. This model was further
improved by incorporating features constructed from the similarities between
the considered view pattern and the training instances. The model proposed in
[12] used the retweet pattern of a tweet during its first hour to predict the num-
ber of retweets three days after publication. The authors partitioned the first
hour into five equally sized time intervals, and then recorded the number of
retweets during each time interval. This information was used to describe each
tweet by a set of features (such as retweet time series, retweet acceleration,
and author). These features were used to determine the most similar tweets in
the training set of the given tweet. The predicted popularity was then set to
the weighted average of the number of retweets among these similar tweets.

The last category of post-publication prediction methods uses data from
one domain (e.g. social media) and transforms it into knowledge to predict
content popularity in another domain (e.g. the site where the content was
published). Oghina et al. [14] trained a linear regression model based on sev-
eral textual features extracted from Twitter, as well as various statistics from
Youtube, to predict movie ratings on IMDb. The authors of [5] proposed a
second-order multiple linear regression model to predict the number of views
of online news articles after 7 days. For a given reference time, the model used
the total number of views, Facebook shares and Twitter posts of the article,
in addition to Twitter statistics such as the average number of followers of
people sharing on Twitter and the entropy of the tweets.

The objective of the ECML/PKDD 2014 Predictive Analytics challenge2

was to predict the number of views, Facebook shares, and Twitter posts of web
pages after their first 48 hours online. As input, the popularity trends during
the first hour were given. The winner [9] of the challenge combined different
ideas of the models proposed in [5] and [15]. Similar to [5], they used second-
order multiple linear regression models based on several popularity metrics to
predict the number of views. For the given reference time (i.e., one hour after
publication), the model considered the number of views, Facebook shares and

2 https://sites.google.com/site/predictivechallenge2014/
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Twitter posts per time interval (i.e. 5 minutes), starting from the publication
time until the reference time. Additional features were formed using the pub-
lication weekday and hour of the article. The authors of [9] further improved
their model by using the ideas presented in [15]. In particular, they also used
the similarity of the view pattern to canonical patterns extracted from the
training set, in order to improve the model performance. These canonical pat-
terns were constructed by normalizing and clustering all view patterns in the
training set.

Our proposed method differs from these post-publication approaches in
multiple aspects. We explicitly model the temporal behavior underlying the
historical popularity of the articles, and use the resulting parameters as ad-
ditional features for the regressors. We also consider features related to the
content and meta-data of the articles. Finally, we propose the use of a more
advanced regression algorithm.

3 Experimental Data

In this study we use data from the newsmonkey3 online news platform. News-
monkey is a Buzzfeed-like4 news website, currently focusing on the Belgian
market. Similar to Buzzfeed, newsmonkey combines breaking news with highly
shareable stories. Our dataset consists of 2614 articles and the detailed asso-
ciated click data, which we collected between April 27, 2015 and September
10, 2015. The first three quarters (until July 25, 2015) are used as a training
set K, and the last quarter is considered as the test set U (with content from
August 6, 2015 onwards, in order to limit the immediate correlation between
both). An article’s final popularity is measured as the number of views 120
hours (5 days) after publication on the website. Figure 1 shows a boxplot of
the total number of views received per day after publication. We observe that
most articles have a lifetime considerably shorter than this 5 day period, such
that the number of views becomes stable well before 5 days after their ini-
tial publication. The average number of views per article is about 2000, of
which 62% directly come from Facebook and only 3% from Twitter. This is
in line with the strategy of newsmonkey, mainly focusing on optimizing their
popularity on Facebook.

Few articles reach a very high number of views, whereas the majority of
articles only get a low reach. As an illustration, Figure 2 shows the number of
views for all articles as a function of the rank of each article, when sorted by
decreasing number of views. Except for the least popular articles, the observed
behavior is approximately linear on logarithmic axes. This Zipfian behavior
[13,21–24] means that the number of views per article follows a power law.

Figure 3 shows the normalized popularity for the articles in the training
set as the fraction of views for each hour of the day, considered separately for

3 http://newsmonkey.be
4 Buzzfeed is a popular American news platform, and one of the first who focuses on

highly shareable breaking news, original reporting, entertainment, and video.
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Fig. 1: Boxplot of number of total views received per day after publication,
for all articles in the dataset.
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Fig. 2: Zipfian distribution of the number of views for all articles in the dataset,
ranked in decreasing order.

the views originating from Facebook (Facebook views), from Twitter (Twitter
views), and all remaining views (direct views). We notice that the users are
much less active at night than during the day. Also, there is some difference
in behavior between the three considered types of views.

4 Popularity Pattern Modeling

A good understanding of how the popularity changes over time and which ex-
ternal elements have the largest impact, is essential in order to create a suitable
model, or to design appropriate features for popularity predictions. Therefore
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Fig. 3: Normalized number of direct views, Facebook views, and Twitter views
for each hour of the day, for the articles in the training set.

in this section we propose a new temporal popularity model. Despite its sim-
plicity, we show that this model is able to accurately capture the temporal
behavior of a particular popularity measure for a given article, and compare
it with a number of existing models. In this paper, we consider the evolution
of the total number of views of each article, measured at hourly intervals.
However, the methodology can be easily extended towards other popularity
metrics (e.g. Facebook shares) and more fine-grained time intervals. As an
illustration throughout this section, we will use the total number of views of
a typical article, shown in Figure 4. This particular article was published on
Twitter immediately after its publication online, and on Facebook 25 hours
later. In Section 5, a prediction model is introduced that makes use of the
insights obtained from the proposed temporal model and explicitly uses its
parameters as features.

4.1 Log-normal Baseline

In previous work, the popularity of online news articles is often modeled using a
log-normal distribution [10,19,20,18]. In particular, its cumulative distribution
can be used to model the total number of views at a particular time:

vit ≈ si · clogn(t;µi, σi) (1)

with vit the observed total number of views of article i at time t, s the scale
factor that corresponds to the number of views at infinity, and clogn the cu-
mulative log-normal distribution given by

clogn(t;µ, σ) =
1

σ
√

2π

∫ t

0

e−
(ln(ξ)−µ)2

2σ2 dξ (2)
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Fig. 4: Number of views of an example article as a function of time.
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(a) Log-normal fit of total views, Eq. 1.
Total views RRSE=0.342.

0 24 48 72 96 120
time after publication (hours)

0

500

1000

1500

2000

2500

3000

3500

v
ie
w
s

total views

direct views

Facebook views

Twitter views

Fit of total views

(b) Log-normal fit per component, Eq. 3.
Total views RRSE=0.077.
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(c) LinExp fit per component, Eq. 6.
Total views RRSE=0.067.

0 24 48 72 96 120
time after publication (hours)

0

500

1000

1500

2000

2500

3000

3500

v
ie
w
s

total views

direct views

Facebook views

Twitter views

Fit of total views

(d) Transformed-time fit per component.
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Fig. 5: Example curve fit with different models, for the example in Fig. 4, with
indication of the root relative squared error (RRSE) of the total views fit.
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with µ and σ the parameters of the distribution. The log-normal fit of the view
pattern of Figure 4 is shown in Figure 5a.

The authors of [10,18] used user comments as popularity metric. However,
the number of view patterns may be more complex. As can be seen in Figure 4,
the curve of the total number of views consists of multiple components which
do not necessarily start at the publication time. As could be anticipated, it
appears to be a good approximation to assume that the direct views start
to arrive at the moment the article is published on the website (t = 0), the
Facebook views at the moment the article is published on Facebook, and the
Twitter views at the moment it is posted on Twitter. Since we can measure
which views originate from Facebook, Twitter, or from elsewhere, we can ex-
plicitly model these different components. A better model for the total number
of views therefore consists of the sum of the separate log-normal fits of the
different components:

vit ≈ sid · clognd(t;µ
i
d, σ

i
d)

+ bF · siF · clognF (t− tF ;µiF , σ
i
F )

+ bT · siT · clognT (t− tT ;µiT , σ
i
T ) (3)

with clognd(·), clognF (·) and clognT (·) the log-normal distribution associated
with respectively the direct views, Facebook views, and Twitter views as de-
fined in Equation 1. Parameter bF (resp. bT ) is a known binary parameter
that indicates whether the article is published on Facebook (resp. Twitter).
Parameter tF is the number of time units after the original publication (t = 0)
that the article is posted on Facebook, and similarly for tT on Twitter. Strictly
speaking, clogn(t;µ, σ) is not defined for t < 0, but in Equation 3 we simple
assume the contributions from the Facebook and Twitter components to be
zero before their respective publication moments. The fit of the example article
of Figure 4 according to this strategy can been seen in Figure 5b.

4.2 Linear-Exponential Popularity Model (LinExp)

In this section, we investigate alternative models, accurately capturing the
observed behavior, preferably having parameters that are intuitively inter-
pretable. When inspecting the data, measured by the hour, we rarely observed
the typical log-normal behavior of an initial slow uptake, which increases and
then again slows down towards the asymptotic value. We noticed that most
often there simply is an initial uptake speed, that immediately starts to relax
in a gradual way. Also, sometimes we noticed a small and constant uptake,
independent from the large initial uptake directly after publication. A simple
model for the uptake speed ν (or the number of views per time unit) corre-
sponding to these observations and starting at time t = 0 is

ν(t; c1, c2, T ) =
c1
T
e−

t
T + c2 (4)
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(a) Uniform hours
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(b) Normalized hours

Fig. 6: Number of direct views in function of time for articles published between
June 10, 2015 12:00 and June 12, 2015 12:00.

The first term of the right-hand side represents an exponential relaxation that
reflects the gradual decrease of the uptake speed. The second term is the
small constant uptake that sometimes becomes visible. It can be explained
intuitively by assuming a small constant chance that a random user clicks the
considered article, e.g. when browsing the news site, and which is independent
of the article’s publication time.

By integrating Equation 4 up to the current time t, the cumulative behavior
becomes

V (t; c1, c2, T ) = c1(1− e− t
T ) + c2t. (5)

The total number of views vit for article i at time t can thus be modeled by
adding different components of this form, for direct views, Facebook views,
and Twitter views.

vit ≈ Vd(t; ci1,d, ci2,d, T id)
+ bF · VF (t− tF ; ci1,F , c

i
2,F , T

i
F )

+ bT · VT (t− tT ; ci1,T , c
i
2,T , T

i
T ) (6)

We will call this the Linear-Exponential model, abbreviated as the LinExp
model. The fit of the example article of Figure 4 according to this proposed
popularity model can be seen in Figure 5c.

4.3 Time Transformation

As can be seen in Figure 4, the number of visits retrieved between 7 and
14 hours and between 31 and 38 hours after publication is almost zero. This
corresponds more or less to the period between 1 am and 8 am. As most people
in the target audience sleep during that period, the articles do not retrieve a lot
of additional visits and the view pattern also ‘sleeps’. This is reflected by the
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average number of views per hour of the day or night as shown in Figure 3 for
direct views, Facebook views, and Twitter views. We would like to integrate
this behavior into the model, without adding more degrees of freedom than
necessary. In order to give a better qualitative idea of the problem, in Figure
6a we show all direct views for two randomly chosen consecutive days (June
10-12, 2015), as a function of time. The x-axis denotes the time starting on
June 10, 2015 at noon, up to 2 days later. Along the y-axis, the direct views
are shown, normalized for convenience by their stabilized value after 5 days.
We clearly see that the night has a similar effect on most articles. This effect
is stronger with later publication times. Also, during the second night that
articles have been online, this effect is less pronounced but still present.

There are several ways to model this effect. Directly replacing the functions
from Equation 5 by a more complex mathematical expression that depends
on the publication time and models the observed behavior, would come with
additional parameters and lead to a more complex model. This can be avoided
by noticing that the day/night effect seems to be article-independent. We
therefore propose the following heuristic: we replace each uniform time interval
by the corresponding normalized value of the average number of reads during
that hour, i.e. the values shown in Figure 3 for the respective components.
As a result, nightly hours have a shorter normalized duration or effectively go
faster, whereas during the day the effective time goes slower than on average.
By applying this time transformation, the average number of reads per unit
of normalized time would become uniform throughout the day. If indeed this
time effect is completely article independent, we can expect that the day/night
effect in the individual article view patterns disappears as well. Figure 6b shows
the same view patterns as Figure 6a, but with the transformed time axis, and
we can conclude qualitatively that the day/night effect is no longer clearly
visible. Note that the time transformation needs to be applied for each of the
components (direct, Facebook, Twitter) separately, as they are subject to a
different reading behavior as already shown in Figure 3.

The proposed time transformation seems to be a suitable heuristic, and
has an important advantage: we need to calculate the transformation only
once per component type (direct views, Facebook, or Twitter), after which
we can apply the original model of Equation 5 on the transformed time axis,
without adding any model parameters. Even more, this transformation could
be adapted to the day of week or weekend, or to the seasons, just by suitably
averaging the number of views per hour. While evaluating the model, the in-
verse transformation needs to be made. For example, the predicted popularity
at transformed time t̃ corresponds to the predicted popularity at the actual
time t, in which t̃ was obtained by transforming t as described above. The
transformed-time fit of the example article of Figure 4 can be seen in Figure
5d.
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4.4 Parameter Estimation

For the log-normal baseline, the parameters s, µ, and σ are estimated using
maximum likelihood estimation (MLE), as described in [7].

For the LinExp popularity model of Section 4.2, the parameters are also
estimated with MLE. More in particular, with c := [c1, c2]> and φ(t) :=
[(1 − e−

t
T ), t]>, we can write V (t; c, T ) = c>φ(t). Note that in line with

Section 4.3, t denotes the transformed time with respect to the start of the
considered component.

Minimizing the sum of squared errors, or equivalently, maximizing the like-
lihood under the assumption of additive Gaussian noise, leads to the following
estimate ĉ for the coefficients:

ĉ =
(∑

t

φtφ
>
t

)−1(∑
t

vtφt

)
(7)

in which vt denotes the observed popularity value at time t, and we shortly
write φt := φ(t). A detailed treatment of this linear regression problem is
given in [3].

The time constant T is also an unknown parameter. It can be determined
by applying the expectation maximization (EM) algorithm, in which the ex-
pectation step, given by Equation 7, is followed iteratively by the maximization
step

T = argmaxT

(
−
∑
t

(vt − ĉ>φt)2
)
. (8)

4.5 Evaluation

To evaluate the quality of the curve fitting for article i, we use the root relative
squared error (RRSE):

RRSEi =

√∑
t(v̂

i
t − vit)2∑

t(v
i − vit)2

(9)

with vit the observed number of total views at time t of article i, and v̂it the value
approximated by the model. We denote the average of the vit observations for
the considered article as vi. For our experiments we have an hourly observation
of the total views, starting from the moment of publication, up to 5 days (120
hours) later, or t = 0, . . . , 120. The RRSE is calculated over the articles in the
training set K and its mean value (written MRRSE) is used to evaluate the
different models:

MRRSE =
1

|K|

|K|∑
i=1

RRSEi (10)

The MRRSE values for the considered temporal popularity models are
shown in Table 1. We notice that the curve fitting performance is improved by
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model MRRSE
log-normal fit, Eq. 1 0.233
log-normal fit per component, Eq. 3 0.211
linexp fit per component, Eq. 6 0.151
transformed-time fit per component 0.124

Table 1: MRRSE of the temporal popularity models. All differences between
models are significant (p < 0.001).
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(a) Log-normal fit of total views, Eq. 1.
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(b) Log-normal fit per component, Eq. 3.
Total views RRSE=0.156.
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(c) LinExp fit per component, Eq. 6.
Total views RRSE=0.101.

0 24 48 72 96 120
time after publication (hours)

0

50

100

150

200

250

v
ie
w
s total views

direct views

Facebook views

Twitter views

Fit of total views

(d) Transformed-time fit per component.
Total views RRSE=0.065.

Fig. 7: Another example curve fit with different models, with indication of the
root relative squared error (RRSE) of the total views fit.

explicitly modeling the different components (Equation 3) instead of directly
fitting the total number of views (Equation 1). The proposed LinExp model as
defined in Equation 6 leads to further improvements. We can hence conclude
that the functions in Equation 5 better describe the separate components than
the log-normal model. The time transformation leads to a further decrease in
the average error. All mentioned improvements appeared significant up to the
level p = 0.001, using a one-sided bootstrap significance test [16].
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Figure 5 clearly shows the added value of modeling the direct views, Twit-
ter views and Facebook views separately instead of directly fitting the total
number of views (Figure 5a vs. 5b). The error further decreases when using our
proposed model (Figure 5c). The error reduction is small because the popular-
ity totally stagnates after two days, leading to a near-zero coefficient c2 in the
linear component c2t (Equation 5). Finally, the use of the time transformation
leads to further improvements (Figure 5d). Figure 7 provides another visual
illustration. It shows the various model fits for a less popular article as com-
pared to Figure 4, with indication of the RRSE. In this example, the article was
published on Facebook and Twitter together with its initial online publication,
such that modeling all three components separately does not contribute much
with respect to directly modeling the total number of views (Figure 7a vs. 7b).
However, we notice that while the Twitter and Facebook views become stable
after one day, there is a noticeable linear increase of the direct views, which
continues during the subsequent days. The linear component c2t in Equation
5, which we introduced as a constant (i.e., publication time independent) rate
of users browsing to the article, accurately models that behavior. This leads to
a lower error, as seen from Figure 7b with the log-normal model vs. Figure 7c
with the proposed LinExp popularity model. The time-transformed model as
described in Section 4.3 further reduces the error, confirming the added value
of taking into account the variation in popularity throughout the day.

5 Popularity Prediction

In this section, we show how the total popularity of news articles can be
predicted. An important insight from the previous section, is the need to model
the different components separately, which we follow for the prediction task as
well. In particular, we train three different regressors to respectively predict the
direct views, Facebook views, and Twitter views. The articles’ final popularity
is measured for each of these components, at target time τ after publication
on the website, on Facebook, or on Twitter, respectively. The objective is thus
to predict for each article at a particular reference time r its final popularity
at a future point in time, which we will refer to as the target time τ (with
0 ≤ r ≤ τ). Note that we use the general term ‘views’ to indicate any of
the previously introduced popularity metrics. It may refer to direct views,
Facebook views, or Twitter views, but also to other popularity metrics like
Facebook shares, which we do not explicitly treat in this paper.

In Section 5.1, we give an extensive overview of existing approaches, which
we implemented as baseline methods. Our proposed prediction methodology
is described in Section 5.2. Finally, we evaluate the baselines and the proposed
methodology in Section 5.3.
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5.1 Baselines

This section provides an overview of baseline methods based on linear regres-
sion models. Similar to the approaches described in [17,5,9] we log-transform
the popularity values as there is a better correlation between the log-transformed
popularities at reference time r and target time τ than between the untrans-
formed popularities. The regression model thus takes the form

log(1 + v̂τ ) = log(1 +Xr)β (11)

in which we assume a component-wise logarithmic transformation of the vector
v̂τ of predicted views at target time τ for the considered articles, and of the
article features in matrix Xr constructed at reference time r. Each row xir in
matrix Xr corresponds to the vector of feature values of article i and

log(1 + v̂iτ ) = log(1 + xir)β (12)

with vector v̂iτ the predicted number of views at target time τ of article i. The
parameters β are estimated using ordinary least squares on the training set
K:

β = argminβ ||log(1 + vτ )− log(1 +Xr)β||22 (13)

with vτ the observed views at target time τ and || · ||22 the squared L2-norm.
The goal of this objective function is to minimize the sum of the squared
errors on the log-transformed data. We consider several baseline methods that
are based on this linear regression model and describe them in the following
paragraphs.

Szabo and Huberman model (SH model) The simplest model, in-
troduced by Szabo and Huberman [17], only considers the number of visits
measured at reference time r,

xir = [vir] (14)

with vir the number of visits for article i at reference time r.
Multivariate Linear model (ML model) Pinto et al. [15] extended the

SH model by considering the whole history of the number of visits, or

xir = [vi1, v
i
2 . . . v

i
r] (15)

with vit the number of visits for article i, observed t time units after publication.
Radial Basis Functions model (RBF model) The authors of [15]

extended their ML model by indirectly incorporating the different possible
popularity patterns. In particular, they proposed to take into account the
similarity in terms of early popularity between the article and n randomly
selected examples from the training set, called subset S. Gaussian Radial Basis
Functions (RBF) were used for measuring the similarity between articles i and
a ∈ S:

RBFa(i) = e−
||xir−xar ||

2
2

2·σ2 (16)
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with xir the ML feature vector as defined in Equation 15, and parameter σ > 0.
Equation 12 can then be rewritten as

log(1 + v̂iτ ) = log(1 + xir)β +
∑
a∈S

wa ·RBFa(i) (17)

with xir as defined in Equation 15. The ML model and RBF model were orig-
inally optimized and evaluated using the mean relative squared error, instead
of the sum of the squared logarithmic errors as used in this paper.

First-Order Social Media model (FOSM model) The fourth baseline
is based on the model introduced by Castillo et al. [5]. The authors proposed
a multiple linear regression model which uses the number of visits at reference
time, together with metrics retrieved from social media. The first-order model
is given by Equation 12, whereby

xir = [vir, v
i
r,F , v

i
r,T , m

i
r,F , m

i
r,T ] (18)

with vir,F the number of views originating from Facebook article i received at

reference time r, vir,T the number of article i views originating from Twitter

at reference time r, and mi
r,F and mi

r,T the number of respectively Facebook
shares and tweets related to article i at time r. To be precise, the original
model described in [5] does not consider Facebook or Twitter views. Instead,
their model includes the number of visits from link referrals, direct traffic
from e-mail, and some Twitter statistics such as the entropy of the tweets and
number of unique tweets. However, since these features are not available in
our dataset, we replace them by the features listed in Equation 18.

Second-Order Social Media model (SOSM model) The paper of [5]
also describes a second-order variant of their first-order social media model. In
addition to the first-order features described in Equation 18, they also include
the second-order interactions of these features. These features are included to
model the interdependency of the variables.

Mixed model Our last baselines are based on the models proposed by
Figueiredo et al. [9], winner of the ECML/PKDD 2014 Predictive Analytics
Challenge. Their models are based on the ideas of the RBF and SOSM model.
The first model considers both the whole history of the popularity metric
values and the metrics retrieved from social media. The vector representing
the whole history of the number of visits is defined as

vir = [vi1, v
i
2 . . . v

i
r] (19)

Similarly, the history of Facebook views, Twitter views, Facebook shares and
Twitter posts are represented by vectors vir,F , vir,T , mi

r,F , mi
r,T , respectively.

The binary vector di is a one-hot feature vector to represent the week day,
and similarly, hi represents the publication hour of article i. The feature vector
xir representing article i in Equation 12 is then constructed by concatenating
di, hi, vir, v

i
r,F , vir,T , mi

r,F , and mi
r,T , and all of their pairwise interactions,

represented by the elementwise products. Again, the original model does not
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consider the Facebook views and Twitter views. It considers the time series of
the average time each user spends on the page, which we have to leave out as
it is unavailable in our dataset.

Mixed-Trend model Similar to the RBF model, the authors of [9] ex-
tended their Mixed model by indirectly incorporating the different possible
popularity patterns. In particular, they proposed to take into account the sim-
ilarity in terms of early popularity between the article and k cluster centers.
The early popularity of article i can be represented by the vector

pir = [log(1 + δi1), log(1 + δi2) . . . log(1 + δir)]
> (20)

with δit the number of visits gained in time interval t, i.e. δit = vit − vit−1. The
similarity between two articles a and i is then quantified using the euclidean
distance:

dista(i) = ||pir − par ||2 (21)

with pir the z-normalized vector of pir. This distance function is used to de-
termine k cluster centers (set C) using the k-means algorithm on the training
set. Equation 12 can then be modified to

log(1 + v̂iτ ) = log(1 + xir)β +
∑
a∈C

wa · dista(i). (22)

5.2 Proposed Methodology and Features

We will evaluate the popularity predictions based on five different models, be-
sides the baselines described above. These five proposed models differ in terms
of the considered regression algorithm, and the different types of included fea-
tures. The features, discussed below, are listed in Table 2. For the models, we
distinguish between a linear regression model (similar to the baselines) and the
gradient tree boosting (GTB) algorithm. The latter is often used in winning
methodologies for Kaggle competitions5, because it can handle non-linearities
in the data and interactions between the features. We use the regression im-
plementations available in the Python scikit-learn package6. The models can
be characterized as follows

– LM history: linear regression model, based on the ‘history’ features de-
scribed in Table 2,

– LM history+curve: linear regression model, based on the ‘history’ and
‘curve’ features described in Table 2,

– RIDGE history+curve: linear regression model with L2 regularization
(ridge regression, α = 1.0), based on the ‘history’ and ‘curve’ features,

– GTB history+curve: GTB regression, with the ‘history’ and ‘curve’ fea-
tures,

– GTB all: GTB regression, with all described features.
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We provide a short description for each of the ten groups of features listed
in Table 2:

History These features capture the popularity pattern of the article. Sim-
ilar to [5], we use the popularity expressed by other metrics (e.g., Facebook
views and Twitter views) to better predict the considered popularity metric
(e.g., direct views). In particular, the total views, direct views, Facebook views,
Twitter views, and Facebook shares are considered. Similar to the prediction
method described in Section 5.1, all popularity values are log-transformed.

Curve Features We incorporate our knowledge of the distributions which
underlie the article popularity pattern, as discussed in Section 4. In particular,
we estimate the parameters of Equation 5 for the known historical popularity
values as described in Section 4.4. These parameters are then used as features
for the regression model.

Author We include the average popularity of the articles in the training set
published by the same author of the considered article, its standard deviation,
and also the number of training articles by that author. In addition, one-hot
feature vectors are used to indicate the specific author.

Category The journalists of newsmonkey manually labeled all articles
with one or more category from a set of 16 categories (society, politics, tv,
music, life and style, cyberspace, tech and gadgets, planet, travel, movies,
starts, economy, body and soul, science, pets, and games). Similar to the author
features, we represent the categories of the article by an average popularity,
standard deviation, number of articles, and a binary vector to indicate the
categories.

Publication Time and Date Similar to [9], we include the publication
hour and week day as features.

Title We determine whether the title of the considered article contains a
number (binary feature). Articles containing a number in their title are mostly
articles containing lists, and their title often starts with a phrase like ‘n reasons
why. . .’, with n a number. These ‘list’ articles are constructed with the main
objective that they are very shareable on Facebook, which makes the described
feature very informative. Additionally, we use named entity recognition [8] to
extract the named entities and their type from the title. The possible entity
types, for which binary features are introduced, are organization, location,
person, or miscellaneous.

Source Article With a binary feature, we indicate whether or not the
article refers to a source article, i.e., an article from another news website
which is cited by the article (for example from Business Insider or Mashable).
We also include a feature with the number of Facebook shares the source
article already received at publication time of the considered article.

Virality The journalists of newsmonkey annotated some articles with la-
bels reflecting their experience on which articles will go viral on Facebook and

5 https://www.kaggle.com/
6 http://scikit-learn.org
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why. In particular, they manually labeled their articles as ‘will go viral’ if they
estimated that the article would be very popular on Facebook.

Target Audience For the articles labeled as ‘will go viral’, the authors
also indicated the target audience. The target audience is given by the target
gender (female, male, or both) and target age range (18-24, 25-34, or 18-34
years old).

Emotion In addition to the target audience, the authors labeled ‘will go
viral’ articles with an emotion label, which is included as a binary feature
vector. The annotated emotion label of a particular article is not the direct
emotion it is expected to provoke in the readers, as considered in previous
research [1,4]. Instead, it is the emotion of why users are expected to share the
article. The considered emotion labels are recognizability, identity, awe, humor,
pride, malicious pleasure, altruism, taboo, outrage, nostalgia, and softening.

5.3 Evaluation

In this section, we evaluate the proposed prediction methodologies. The models
are trained using training set K and evaluated on the articles in a separate
test set U . The parameters of the models are optimized using 5-fold cross-
validation on the training set. As evaluation metric indicating the performance
of the predictions, we use the root mean squared log error (RMSLE):

RMSLE =

√
1

|U |
∑
i∈U

(log(v̂iτ + 1)− log(viτ + 1))2 (23)

with viτ the observed number of views of article i at target time τ , and v̂iτ
the predicted number of views. In other words, the RMSLE indicates how
well the popularity at target time τ is predicted for all articles in the test
set. This evaluation metric is also used in the ECML/PKDD 2014 Predictive
Analytics challenge7. To determine whether the difference in performance of
two methods is statistical significant, we use the unpaired bootstrap hypothesis
test [16]. We consider the predictions with a target time τ of 5 days (120
hours) after publication of the article, and reference time r one to 24 hours
after publication, with time intervals of one hour. For each considered reference
time and popularity metric (direct views, Facebook views and Twitter views),
we train and evaluate a separate regressor. We focus on the first 24 hours
after publication, because in order to adapt the publishing strategy it is most
important to get good predictions at an early stage after publication on the
website. For example, 90% of the Facebook publications of the articles in our
dataset appear within 13 hours after they were published on the website. We
first describe our evaluation on the predictions of the direct views, after which
we discuss the Facebook and Twitter predictions.

7 https://sites.google.com/site/predictivechallenge2014/
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Fig. 8: Performance of the four different versions of our proposed methodology,
considering direct views.

5.3.1 Direct views

We first consider the number of direct views five days after online publication
as the popularity quantity to be predicted. The performance of the five meth-
ods we proposed in Section 5.2 is shown in Figure 8. The RMSLE is shown
as a function of the reference time r. In other words, the RMSLE indicates
for a particular reference time r how well the popularity at target time τ is
predicted, given observations and features up to time r. The linear regression
model trained on both the historical popularity and the curve features (LM
history+curve) performs better than the linear model only trained on the his-
torical popularity (LM history) before hour 20. However, the improvement is
not statistically significant (bootstrap hypothesis test, p > 0.2). The error of
the linear models (LM history and LM history+curve) decreases steadily up
to 19 hours after publication, after which the error increases again and starts
to fluctuate. This is mainly due to over-fitting of the linear model. When regu-
larization is applied (RIDGE history+curve), we notice that the performance
is similar for the first 19 hours after publication (bootstrap hypothesis test,
p > 0.2). However, the error for the regularized model further decreases after
hour 20, as over-fitting is avoided. The GTB regressors (GTB history+curve)
are also robust to over-fitting, and lead to a slight improvement with respect
to the ridge regressors (RIDGE history+curve) for reference hours 5 to 17
(bootstrap hypothesis test, p > 0.2). The last model, which applies GTB re-
gression on all proposed features (GTB all), outperforms GTB history+curve
for reference time r between hours 1 and 19. The improvement is statistically
significant for 3 ≤ r ≤ 6 and 10 ≤ r ≤ 14 (p < 0.05). We conclude that
adding content and meta-data related features on top of temporal features
significantly improves the prediction effectiveness.
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model RMSLE
GTB all 0.381
GTB history+author 0.405
GTB history+target 0.409
GTB history+virality 0.410
GTB history+emotion 0.415
GTB history+category 0.438
GTB history+publication 0.442
GTB history+source 0.451
GTB history+title 0.453
GTB history 0.453

Table 3: Performance of the content and meta-data feature types at reference
time 10, considering direct views.
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Fig. 9: Performance of the baselines and our proposed methodology, consider-
ing direct views.

To investigate the contribution of each content and meta-data related fea-
ture type described in Table 2, a GTB regressor is trained using the history
features and the features of the considered type. The performances of these
models at reference time 10 can be found in Table 3. We observe that the au-
thor features lead to the highest increase of performance (about 5% RMSLE
reduction), closely followed by the manually annotated features (i.e. virality,
target audience and emotion). The use of the publication or category features
in addition to the history features also improves the performance (about 1%
in RMSLE). On the other hand, the article source and title features hardly
improve the GTB history model. Using all introduced content and meta-data
features results in the best performance (decrease of about 7% in RMSLE).

We now compare the baselines introduced in Section 5.1 with our best
model (GTB all), as shown in Figure 9. First of all, and most importantly, we
see that our method outperforms all seven considered baselines significantly
between one hour and 16 hours after publication (p < 0.05). Furthermore,
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Fig. 10: Performance of the baselines and our proposed methodology, consid-
ering Facebook views.

between reference hour 3 and 16, our method improves on all baselines with
more than 10% in RMSLE. As it is most important to get good predictions in
an early stage after publication, our proposed methodology has a high added
value compared to the baselines. For instance, the RMSLE for the method
GTB all at reference hour 7 (0.387) is only achieved at reference hour 17 for
the best baselines. In other words, the prediction performance of the baselines
17 hours after publication is already achieved by our method after only 7
hours. Starting from reference hour 20, all methods (except for Mixed and
Mixed-Trend) have similar performance (bootstrap hypothesis test, p > 0.2).
This is because the popularity of articles typically becomes stable after having
been published that many hours. As a result, for r ≥ 20, the added value
of more complex regression algorithms and additional features on top of the
historical popularities is no longer significant.

When we compare the baseline methods, we see that one of the most com-
plex methods (Mixed) introduced by [9] performs on average as the best base-
line model between hour one and six. This is in line with the observation
made by [9], testing their model with a reference time of one hour after pub-
lishing and target time of 48 hours after publishing. However, starting from 7
hours after publication, the RMSLE for the methods Mixed and Mixed-Trend
increases and starts to fluctuates. This is due to over-fitting of their linear
regression model trained on a large set of features. This would be resolved
by using regularization, but from the description in [9], it was unclear if and
which sort of regularization was used. Between 7 hours and 19 hours after pub-
lication, the RBF model introduced by [15] has the best baseline performance.
However, the improvement above the other baselines (except for Mixed and
Mixed-Trend) is not statistical significant (p > 0.2).
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Fig. 11: Performance of the baselines and our proposed methodology, consid-
ering Twitter views.

5.3.2 Facebook views

We now consider the number of Facebook views five days after publishing the
article on Facebook as the popularity to be predicted. We only consider the
training articles which effectively got published on Facebook (1940 out of 2614
articles). The performance of the baselines and our proposed methodology is
shown in Figure 10. Our model (GTB all) is the best performing model between
hour 1 and 16 after publication on Facebook. The improvement with respect
to the baselines is significant between reference hour 5 and 8 (p < 0.05). In
particular, for 2 ≤ r ≤ 11, the RMSLE decreases with more than 8% when
using our method instead of the baseline. As an example, the RMSLE for
our method at reference hour 6 (0.223) is only achieved after 10 hours for the
baselines. Starting from 12 hours after publication on Facebook, all considered
methods (except Mixed and Mixed-Trend) display a similar performance (p >
0.2). We notice that the Mixed and Mixed-Trend baselines start to over-fit at
hour 4, which could again be avoided using regularization. The other baselines
show similar prediction performances (p > 0.2).

5.3.3 Twitter views

We now evaluate the performance of the models in their ability to predict
the number of Twitter views. We only consider the 1724 training articles ef-
fectively published on Twitter, and predict the number of Twitter views five
days after publishing the article on Twitter. The performance of all models
is shown in Figure 11. We see that their performance (except for Mixed en
Mixed-Trend) is very similar (p > 0.2). The main reason is that the average
number of Twitter views received for articles published on Twitter is very low
(around 80 views), and becomes constant soon after publication. It is thus not
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obvious to improve the prediction performance in terms of RMSLE by using
more advanced features and algorithms. Note that this behavior is not repre-
sentative for any news data, but in Belgium Twitter is not as widely adopted
as in other countries [6].

We can conclude that our method outperforms all baselines during the first
hours after publication, when direct views or Facebook views are considered.
As mentioned before, the prediction of the direct views and Facebook views
at these early hours is most relevant to optimize the publishing strategy of
online articles. The significant improvement with respect to previously pub-
lished methods therefore has a high added value for popularity predictions in
practice.

6 Conclusion

In order to improve the online publishing strategy of news content, methods
to model and predict the popularity of online news articles are required, which
forms the main topic of this paper. We first identified the distributions which
underlie the view patterns of online news articles. These consist of several
distinct components. The first component becomes visible as soon as the arti-
cle is published on the news publisher’s website. The corresponding views are
referred to as the direct views and originate from e.g. search and browsing.
When the article is published on social media, clear additional components in
the view patterns start to appear. In this paper, we focused on the views orig-
inating from Facebook and Twitter. We then introduced a model that allows
to accurately model these view pattern components. This model captures the
popularity behavior, is simple to fit to observed views, and has parameters that
are intuitively interpretable. Based on real-world data from a young Belgian
publisher that actively targets the distribution of its content over social media,
we demonstrated that this model outperforms previously proposed log-normal
fits. In addition, we took the influence of the day versus night on the view pat-
terns into account to further increase the accuracy, without leading to a more
complex model. By transforming each actual time interval into an equivalent
time interval with an effective duration equal to the normalized total number
of views for that time interval, the influence of the average hourly variations
in number of views is largely canceled out, which allowed for a better fit of the
view pattern to smooth base functions.

As a second contribution, we proposed a methodology to predict the final
popularity for each component adding to the total popularity of an article
(i.e. direct views, Facebook views, and Twitter views). We focused on arti-
cles which are at most one day old, as the predictions of those articles are
most useful. Our primary model was based on existing methods, with linear
regression algorithms and features based on the historical popularity of the ar-
ticles. We then proposed models with improved prediction effectiveness, based
on the following three ideas. First, we used the parameters of our proposed



26 Steven Van Canneyt et al.

popularity model as additional input features, leading to a small overall im-
provement during the first hours after publication, although not significant.
Second, we showed that the use of a more advanced regression technique, i.e.,
Gradient Tree Boosting, gives more accurate predictions. Third, the prediction
performance was significantly improved by considering features based on the
content and meta-data of the articles. Our best model outperformed all dis-
cussed baselines during the first hours after publication, at least for the direct
views or Facebook views. In particular, we considered seven baseline methods,
with features mainly capturing the historical popularity of the considered ar-
ticles. The performance of the Twitter view predictions appeared similar to
the baseline predictions. However, the average number of Twitter views per
article appeared very low in our experimental setup, which prevented further
improvements by using a more complex method. As the prediction of the di-
rect views and Facebook views at the early hours are most relevant in order
to optimize the publishing strategy of online articles, the significant improve-
ment with respect to previously published methods has a high added value for
popularity predictions in practice.

In this paper, we proposed a method which predicts the final popularity of
news articles. However, it is often useful to also predict the popularity dynam-
ics between the current time stamp and its final popularity. This information
can for instance be used to better decide which would be the most suited
moment to publish and promote an article over social media. Therefore, in
future work, we will propose a methodology that predicts the entire future
popularity pattern. This will be achieved by combining the knowledge of the
proposed popularity model, including the day-night behavior of the different
components, with the prediction method with content and meta-data related
features in a single time series prediction setup.

We focused our experimental research on the particular case of a Belgian
news company, training and evaluating our models on the habits and response
of the local audience. Although our trained models are as such not readily
applicable to other cases, we believe our strategy is general enough, to be
applied to different scenarios as well. We showed that a single mathematical
model allows modeling view patterns with very distinct origins (e.g., direct
views vs. Facebook views). Combining the resulting contributions from differ-
ent homogeneous components (direct views, or distinct social media channels),
allows modeling the more complex temporal patterns of total views. In other
contexts, first an analysis of the main components (e.g., also characterized
by their origin) needs to be carried out, after which the recorded views can
be used, similarly to our work, for training predictors that take into account
the different components. Important aspects such as information of events that
initiate new components (e.g., social pushes) need to be monitored as well, ob-
viously. Furthermore, we have discussed some highly informative qualitative
(meta-data) features in our experiments (category, emotion, editorial intended
popularity levels...), which could provide ideas to companies intending to de-
sign a popularity prediction system. Of course, different features would be
available in other contexts. This makes it difficult to rely on the absolute ef-
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fectiveness scores mentioned in our work, but we propose that the qualitative
approach and mathematical description hold nevertheless.
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